The French National Center for Scientific Research (Centre national de la recherche scientifique, CNRS) is the largest governmental research organization in France and the largest fundamental science agency in Europe, employing over 30,000 staff members and a budget of €3.3 billions. In 2017 CNRS was 1st in Nature article Count Ranking, is the 5th patent filler in France and is ranked the 8th most innovative public research institution worldwide by Thomson Reuters. Institut Néel (NEEL) is the CNRS flagship laboratory for fundamental research in condensed matter physics. It is enriched by interdisciplinary activities at the interfaces with chemistry, engineering and biology. Its 450 members explore a vast field of science: superconductivity, quantum fluids, new materials, crystallography, surface science, quantum nanoelectronics, nanomechanics, nonlinear and quantum optics, spintronics, magnetism… NEEL has exceptional expertise in advanced technology, closely integrated in its research projects (i.e. design of the last cooling stage of the HFI instrument in the Planck Space Telescope). In the last 10 years it filled 50 applications for invention patents (a number of which in co-deposition with industrial partners) and has 15 active “know-how” licences agreements with industrial partners. The research team “Optics and Materials” (OPTIMA) has over 25 years of expertise [1] in crystal growth in solution of inorganic, organic and hybrid organic-inorganic compounds. Just over a year ago, NEEL, in collaboration with CEA, has started studying the growth in solution of hybrid perovskites MAPbBr3 single crystals and more specifically, the correlation between growth conditions and formation of defects. Within the WP3 of PEROXIS, NEEL will use its expertise and the knowledge gained on the solution growth of hybrid perovskite single crystals. In Task 3.1 we will design and realize a reactor for the growth of thick (500-1500 µm) layers onto the active matrixes of test vehicles. In task 3.3, NEEL will identify the growth conditions (precursor concentrations, solvent nature temperature profile, hydrodynamic…) of thick layers of hybrid perovskite from the seeding surface leading to continuous front-plates of high crystallinity. These conditions will be implemented in task 3.4 with the optimized seeding layer from Task 3.2 provided by CEA.
May 10, 2022
Excellent stability of perovskite X-ray detectors
We have illustrated that the perovskite MAPbI3 detector shows outstanding X-ray imaging performance even after 1.5 years of storage in ambient condition. Further improvements of the surface passivation of the pixelated X-ray imaging detector are still needed. This research highlights the great potential of perovskite technology to take X-ray imaging to the next step towards a new era in medical imaging.